
ACTA PHYSICA DEBRECINA XLIV, pp (2010)

STUDYING COMPLEX NETWORKS WITH CXNET

Árpád Horváth

Óbuda University, Alba Regia University Centre
H-8000 Székesfehérvár, Budai út 45., Hungary

Email: horvath.arpad@arek.uni-obuda.hu

Abstract

Recent investigations in the field of complex networks in-
clude the analysis of distributions of connections in particular
networks and the clustering properties of networks. In this pre-
sentation we analyse the dependency network of the software
packages of the Ubuntu distribution of GNU/Linux. We devel-
oped the CXNet module for the Python programming language
to analyse this network. Using this module the students can
easily investigate these properties of the package dependency
network.

I. Introduction

Networks are often used as a synonym of the graphs in the field of soci-
ology and some other fields of the science. Networks contains some kinds
of entities. A pair of entity can be connected or not. The entities are called
nodes, vertices or points, the connections are called as edges.

Complex networks are very large networks with a structure difficult to
describe in a compact form. The aim of the science of the complex networks
is to study the properties of real networks. The earliest investigations of
networks happened in the field of sociology by studying the acquaintance
network of people.

There is a lot of networks in the fields of engineering, such as the World
Wide Web, the Internet, whose investigation has brought networks in the

1



Table 1: Real networks
nodes edge exists if. . . type
people they have met each other undirected
web pages there is link from one to other directed
routers of Internet there is wire between them undirected
scientific papers citation directed
proteins they participate in the same inter-

action
undirected

words they are synonyms according to a
given dictionary

undirected

mathematicians authors of the same paper undirected
actors actors of the same movie undirected

forefront of investigations recently. In biology and medicine the network of
protein interactions, the food chain or to forecast the spreading of a disease
the acquaintance and sexual networks are important. Some examples can
be found in the Table 1.

Properties of many networks and methods of the investigations have been
summarized in several papers [1, 2].

II. Definitions

Networks can be directed or undirected. In directed networks the nodes
at the two endpoints of an edge do not have the same role in the connection.

The function and the growth of a network is influenced by the degree
distribution of the network. The ki degree of the i-th node is the number
of nodes connecting this node. The in-degree and out-degree are defined
in a directed network similarly. In-degree includes only the in-connections,
where the arrow leads to the given node, and out degree includes only the
out-connections.

The p degree distribution is a function. p(k) is the probability of a
randomly chosen node has the degree k, or

p(k) = Prob(degree of a randomly choosen node = k). (1)

2



In directed networks we can investigate the distributions of in-degree and
out-degree as well. Many real networks belong to the scale-free networks,
whose degree distribution decreasing as a power-law function for large de-
grees. In this networks there are nodes with degrees orders of magnitude
larger as the average degree. It is difficult to analyse the plots of degree dis-
tributions of scale-free networks, because of the large statistical fluctuation
at large degrees. In such cases the plot of the cumulative degree distribution
is useful. The P (k) value of the cumulative degree distribution gives the
probability of a randomly chosen node having degree larger then k:

P (k) = Prob(degree of a randomly choosen node ≥ k). (2)

In real networks the clustering is usually large. The clustering coefficient
was introduced to measure this property. For a given node it shows the
ratio of the number of existing edges among its neighbours and the number
of the all possible edges among the neighbours. It can only be defined
for undirected networks, so the directed networks need to transformed to
undirected ones to investigate their clustering coefficients. There can be at
most ki(ki − 1)/2 edges between the ki neighbours of the ith node, in the
case they form a complete graph as subgraph, so the Ci clustering coefficient
of node i is

Ci =
2Ei

ki(ki − 1)
, (3)

where Ei is the actual number of the edges between the neighbours of the
edge. The C clustering coefficient of the network can be defined as the
arithmetic mean of the clustering coefficients of the nodes:

C =
1
N

N∑
i=1

Ci (4)

III. The properties of the package dependency network

We have developed a program to analyze the package dependency net-
work of the GNU/Linux operational system.

The GNU/Linux system has a lot of distributions with their own soft-
ware packages. These software packages have two prevalent formats. One

3



vim-common

libc6

python2.5

vim

vim-runtime libgpmg1 libncurses5

vim-vimoutlinervim-latexsuite

Figure 1: A part of the package dependency network: the surroundings of
the package of the Vim text editor. This plot includes the package with the
highest degree, the libc6 package, the standard library of the C program-
ming language.

of them are the deb packet format developed by the Debian distribution
team [5] and used many other distributions, including the popular Ubuntu.
The packages can be reached on optical disks (CD, DVD) or via reposito-
ries on the World Wide Web. One package can depend on other packages,
which means that without them it is not able to function properly. These
dependences are stored in other files than software packages, so we need
to download only these files to create the network of the packages. These
dependences can be treated by the APT package managing tool. This tool
can search the dependences of a package, and install this package with all
the other packages it needs or with a removal of a package all the dependent
packages to remove. The packages compose a directed network. We defined
the direction of the edges to direct form the dependent package to the pack-
age it depends on. A part of the package dependency network can be seen
in Fig. 1, the package of the Vim text editor with its neighbours. We can
observe, that we need the version of 2.5 of the Python programming lan-
guage (python2.5 package) and the standard library of the C programming
language to install the vim package and the vim package needs to install
other packages as well.

In this article we investigated the package dependency network of the

4



100 101 102 103 104 105

k

10-6

10-5

10-4

10-3

10-2

10-1

100

P(
k)

Cumulative plain degree distribution

Figure 2: The cumulative degree distribution of the package dependency
network (continuous), and the power-law function with the exponent −1, 19
given by the maximum likelihood method (dashed).

(
γ = 2.19± 0.14 +0.1

−0.12

)

Jaunty (9.04) version of Ubuntu distribution dated November 3, 2009. The
stored files can be found on the web page
http://mail.roik.bmf.hu/cxnet/netdata/

In this network the number of nodes and edges are N = 27554 and
M = 126540 respectively. The network is not connected, but 93.14% of the
nodes belongs to one, the largest component. The diameter of the largest
component is 13, so any two nodes can be reached from one to the other
through 13 edges.

The cumulative degree distribution of the network can be seen in Fig.
2. We can see without any calculation, that the scale-free model better fits
the distribution than the random graph model.

We can estimate the absolute value of the exponent, γ > 0 of the power-

5



law distribution assumed to be valid for the network with the maximum
likelihood method [6]:

γ = 1 +N

 ∑
ki>kmin

ln
ki

kmin

−1

, (5)

where kmin means the minimum value of degrees above which we assume
the power-law behaviour. This estimate is valid for continuous power-law
distributions, but with a small modification it can also be used for discrete
power-law distributions [7]:

γ = 1 +N

 ∑
ki>kmin

ln
ki

kmin − 0.5

−1

kmin ∈ Z , (6)

which we use below. The estimate for its standard deviation is

σ =
γ − 1√
N

. (7)

Eqn: (6) gives the exponent and eqn. (7) its standard deviation exactly,
if the values really come from a power-law distribution, which we have not
proven in our case. A rigorous analysis of the distribution needs deeper
statistical knowledge [7], we think that the proof of the power law nature
is worth to be done only with students with such an interest.

Instead of proving the power-law behaviour, we propose to plot the de-
pendence of γ on the minimal degree (kmin) as in the Fig. 3. As the plot
shows the statistical uncertainty is very small for small values of kmin, but
this is not the real uncertainty of the exponent. As we can see, the value
of the exponent becomes stable around kmin= 240, indicating a true power-
law behaviour only for large degrees. Thus the exponent can be interpreted
only for kmin values above 240. At the uncertainty of the exponent beside
the γ statistical error we may include the fluctuation of the γ values: the
systematic uncertainty. With kmin= 240 we obtain γ = 2.19 and σ = 0.14
from the equations (6) and (7). The systematic uncertainty is calculated
from the differences of the values from the value at 240.

240 ≤ kmin ≤ 600 ⇒ 2.07 ≤ γ ≤ 2.29

6



0 100 200 300 400 500 600
k_min

1.8

2.0

2.2

2.4

2.6

ga
m

m
a

The dependence from k_min of the exponent (plain degree)

Figure 3: The calculated values of the exponent as a function of kmin.

The largest difference in the negative direction is 0.12, in the positive di-
rection is 0.10, so

γ = 2.19± 0.14
+0.1

−0.12

Using cumulative distribution, we obtain the exponent −γ + 1 = −1.19.
Plotting the power law function with that exponent and the cumulative
distribution we can check, that the cumulative distribution is really nearly
parallel to the power law function k−1.19.

The average of the in-degree is equal to the ratio of the number of edges
and the number of nodes

〈kin〉 = M/N = 4.592.

However the largest in-degree is 11868, more than 2500 times larger.

The clustering coefficient is defined for undirected networks, so we have
to transform our directed network into undirected. The clustering coefficient

7



100 101 102 103 104 105

degree

10-4

10-3

10-2

10-1

100

a
v
e
ra

g
e
(c

lu
st

e
ri

n
g
 c

o
e
ff

ic
ie

n
t)

Degree dependence of clustering coefficient

Figure 4: The dependence of the average clustering coefficient on the degree
(dots) and the power law function with the exponent −1 (dashed line)

of the network is 0.308. We can compare it with the values coming from
network models. If the network were a random graph, the p probability of
edges, as well as the C clustering coefficient would be

p =
M

N(N − 1)/2
= C = 0.000333. (8)

In the Barabási–Albert model the mean degree is 2m. To compare the clus-
tering coefficient of the dependency network to that of the Barabási–Albert
model, we first calculated the mean degree of the package dependency net-
work, and we have set m the rounded value of the half of the mean degree.
As the mean degree is

〈k〉 = 2M/N = 9.1849, we have choosen m = 5

for the parameter of the corresponding Barabási–Albert model. With the
parameters N = 27554, m = 5 we obtained a network with 137745 edges

8



and clustering coefficient 0.0032. The parameters of the two models give
us a clustering coefficient 2–3 orders of magnitude smaller, than that of the
package dependency network. The clustering coefficient of the hierarchical
model, discussed in the previous section, is Ch = 0.743 [4], which is in the
same order of magnitude as the coefficient of the dependency network.

We plot the clustering coefficient of the nodes with given degree as a
function of degree (Fig. 4). The dashed line represents the power law func-
tion with the exponent −1. The function does not contradict the degree
dependency of the other networks [4]. Our network can be called hierarchi-
cal network.

IV. Complex networks in the education

One aim of our program development was that students could analyze a
real network created by the computer. In our center in Székesfehérvár there
are two computer rooms, where students can use Linux distributions with
deb packages (Debian and Ubuntu). Our CXNet module, uses the apt mod-
ule of Python to get the dependences, and the IGraph or NetworkX module
[8] to create and analyze the package dependency network and to compare
with the models, and the pylab module of the matplotlib package to plot
functions. There is some Hungarian video tutorial and document helping
to learn the usage of the Python language and the NetworkX module at
http://mail.roik.bmf.hu/cxnet. The English and Hungarian documen-
tation of the CXNet module can be reached from here too and a syllabus
for a 10-week-course in Hunarian.

Unfortunately the usage of IGraph and NetworkX is quite different. Net-
workX has been written entirely in Python. However the NetworkX module
is easier to use and install, we prefer IGraph to NetworkX for its speed. The
IGraph module [9] uses libraries written in C and have been developed to
handle very large networks.

The Pylab module allows us to plot functions as the degree distribution.
The functions of Pylab is similar to the functions of the MATLAB language.
We recommend to use the IPython interactive shell with the option -pylab.
So the plotting of functions and use of mathematical functions are easier as
with the standard Python shell.

9



CXNet have several components worth to mention:

1. The debnetwork function can create the deb package dependency net-
work as an igraph.Graph or networkx.DiGraph instance.

2. The DegreeDistribution is a class of CXNet. It can create cumula-
tive or binned plots of the distribution from the graph objects created
by debnetwork with the Pylab module, and calculate the γ exponent.

3. There is a function to download network data from the web. These
networks include archived dependency networks as well for performing
the analysis on systems not using deb packages.

4. There is a class for creating multifractal networks. Further develop-
ment is necessary to create a tool for adjusting the parameters of the
multifractal to creating networks with pre-defined properties [10].

5. The network_evolution is a standalone module. With this one can
carry out simulations of disease spreading on a growing network, make
measurements on that network during the evolution, and store the re-
sults in a standard binary format of Python. Measuring the diameter
took a lot of time with NetworkX. With IGraph this time decreased
significantly.

We introduced the teaching of complex networks as a part of an optional
course. In this course the students learn the methods to analyze networks,
the models of the networks and the properties of these networks, and they
compare it to real networks. We developed a syllabus for this course. It is
for a course in a computer room. However it includes only 10 weeks because
some extra weeks are necessary to get acquinted with the Python language
and some aspects of the object oriented programming.

Our experience is that the students can perform exercises at home such
as to find the p probability above which a giant component appears in
Erdős–Rényi graphs, and how the value of p depends on the number of
nodes N , or to write a program of the modified Barabási–Albert models,
and the analysis of the network obtained.

V. Conclusion

10



We studied the package dependency network, and we found that it is
a scale-free hierarchical network, sharing some properties with other real
networks. We found that the Python language with some modules (IGraph
or NetworkX) suits for this analysis, these are handy for teaching this field.

We think, that teaching of the complex networks is possible and useful in
some areas of the higher education, such as informatics, physics, sociology,
engineering and biology, as well as in courses of informatics of secondary
education.

This research was supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-
0007 project.

References

[1] R. Albert and A. Barabasi, Statistical mechanics of complex networks”,
Rev. Mod. Phys. 74, 1 (2002)

[2] M. E. J. Newman, The structure and function of complex networks,
SIAM Review 45, 2 (2003).

[3] A.-L. Barabási, Linked: The New Science of Networks. (Perseus,
Cambridge, MA, 2002).

[4] E. Ravasz and A. Barabasi, Hierarchical organization in complex net-
works, Phys. Rev. E67, 026112 (2003).

[5] http://www.debian.org/

[6] M. E. J. Newman, Power laws, pareto distributions and zipf ’s law,
Contemporary Physics 46, 223 (2005).

[7] A. Clauset at al, Power-law distributions in empirical data, http://
arxiv.org/abs/0706.1062

[8] A. Hagberg at al., NetworkX: High productivity software for complex
networks, http://networkx.lanl.gov/

[9] G. Csárdi and T. Nepusz, Igraph, http://igraph.sourceforge.net/

11



[10] G. Palla et al.: Multifractal network generator, Proceedings of the Na-
tional Academy of Sciences 107, 17 (2010).

12


